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ABSTRACT 

A polygon is called semi-regular if its interior angles are equal to one another. 
The paper deals mainly with semi-regular polygons whose sides have integral 
lengths. 

A plane polygon of order n is called semi-regular if its vertex angles have the 

common value (n - 2)7r/n and is said to be of integral type if  each of its edges is 

in length an integer multiple of a given unit length. In this paper we characterize 

these polygons in such a way that we can answer two kinds of questions. First 

we show that there exists a semi-regular polygon of order n > 1 whose edge set 

consists of any n consecutive integers if and only if n is not a power of a prime. 

Secondly, for selected values of n, such as n = p~, n = p~qP, where p and q are 

distinct primes, we determine S(n,k), the number of classes of semi-regular 

polygons of integral type of order n, having each side a(i) in the range 1 < a(i) < k, 

and with the classes distinct under the permutations of the dihedral group G of 

order [G I = 2n. 

Part 1. Cllaraeterization theorems and corollaries 

Using the vector representation for the sum and product of complex numbers, 

we may give an algebraic description of a semi-regular polygon of order n whose 

edges are, in order, a suitable set of positive real numbers a(0), a(1),. . . ,  a(n - 1) 

by insisting that go = e2"~/n be a solution of P(z)= 0 for the polynomial 

n--1 

P(z) = ~. a(v)z ~. 
v = O  

Let us understand that 
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(1) 

LEMMA 1. 

(2) 
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a(#) = a(v) when # =- v mod n. 

I f ( l )  holds and i f  r 1 is any  n-th root of  unity,  then for  any integer c, 

n - 1  n - 1  

Z a(v)rf +c=  • a ( v - c ) t f .  
V=0 v=O 

PROOF. Since r/" = rfl when g = v mod n and since (1) holds, the change in the 

index of summation is readily justified. 

TnEORnM 1. Let p be any prime, a any positive integer, and P( z) = ~ o l a(v) z~ 

a polynomial  with rational coefficients. Let  rlo = e 2"i!p~. Then P(rlo) = 0 i f  and 

only if  

(3) a(v) - a(v + p~- i )  = 0 

for  all integers v, vhere it is understood that (1) holds with n = p~. 

NECESSITY. Assume P(r/o ) = 0. Since the coefficients of P(z) are rational and 

since r/o is a primitive f - t h  root of unity, P(z) is divisible by Op,(z), the cyclotomic 

polynomial, so P(e )=  0 for all primitive p~-th roots of unity e. Imprimitive 

f - t h  roots of unity satisfy z p~-I - 1 = 0, hence every f - t h  root of unity r/, 

primitive or not, satisfies Q ( z ) =  0, where 

(4) 

Using (2) we may rewrite 

(5) 

in the form 

(6) 

o = Q(,t)  = 

p ~ -  1 

Z 
v = 0  

Q ( Z )  = (Z p = - I  - -  1 ) P ( z ) .  

p~-- 1 
a(v) (/7 v+pg-l -  ~v) 

v=O 

[a(v - p~-1) _ a(v)'lrf = 0. 

But such a polynomial of degree p" - 1, with p" roots, must have every coeffi- 

cient vanish. Hence 

(7) a(v - p~-1) _ a(v) = 0, 0 < v < p~ - 1. 

This is equivalent to (3) if we set v' = v - f - 1 .  

SUrFmIENCY. Assume (3). Rewrite (3) as (7) which implies (6) for r/o. By (2) 

rewrite (6) as (5). Then use (4) so that 

(8) (r/~ ~-x - 1)P(r/o ) = 0. 
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p a -  1 
But r/o is a primitive p~-th root  o f  unity, so that  r/o - 1 ~ 0. Hence PQIo) = 0, 

as desired. 

The significance of  (3) is that  for  a semi-regular polygon of  order  p~, exactly p~- 

parameters  may be assigned, say a(1), a (2) , . . . , a (p~- l ) ,  and then the other  a(i) 

are determined in "p-gon  sets" by 

(9) a(s) = a(s + p~- l )  = a(s + 2p ~-1) . . . .  

= a ( s  + ( p  - 1)p "- 1), 1 < s _< p ' -1  

COROLLARY 1. There  is no semi-regular  polygon o f  order n = p ~whose edge 

set consists o f  n consecutive integers. 

TnFOREM 2. Let  p and q be pr imes,  p ~  q, and let P ( z ) =  ~,~q=--o:a(v)z v 

be a po lynomia l  with rational coefficients. Let  r/o = eZ~i/Pq. Then  P(r/o)= 0 i f  

and only i f  

(3')  a(v) - a(v + p) - a(v + q) + a(v + p + q) = 0 

f o r  all integers v, where it is understood that (1) holds with n = pq. 

NECESSITY. Assume P(r/o) = 0. Since the coefficients of  P(z)  are rational and 

since r/o is a primitive pq-th root  of  unity, P(z)  is divisible by the cyclotomic 

polynomial  ~pq(Z), so P(e) = 0 for all primitive pq-th roots of  unity e. Imprimitive 

pq-th roots  of  unity satisfy either z p - 1 = 0 or z q - 1 = 0, hence every pq-th 

root  of  unity r/, primitive or not,  satisfies Q(z) = 0, where 

(4') Q(z) = ( : -  1) (zq-  1)P(z). 

Using (2) we may rewrite 

p q -  1 

(5')  0 = Q(r/) = ]~ a(v)(r /v+p+q- r/v+p_ r/v+~ + r/v) 
v = O  

in the form 

p q -  1 

(6')  ~ [a(v - p - q) - a(v - p) - a(v - q) + a(v)]r/v = 0. 
v = O  

But such a polynomial  of  degree pq - 1, with pq roots,  must have every coefficient 

vanish. Hence 

(7')  a(v - p - q) - a(v - p) - a(v - q) + a(v) = O, 0 <_ v <- pq - 1. 

This is equivalent to (3') if we set v' = v - p - q. 

SUFEICtENT. Assume (3'). Rewrite (3')  as (7')  which implies (6')  for  r/o. By (2) 

rewrite (6') as (5'). Then  use (4')  so that  
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( 8 ' )  (~/g - -  1 ) (r /~  - -  1 )P(r /o  ) = 0 .  

But r/o is a primitive pq-th root of unity, so t / ~ -  1 # 0 and r/o q - 1 # 0. Hence 

PQ/o) = 0, as desired. 

COROLLARY 2. There exists a semi-regular polygon of order n =pq whose edge 

set is exactly {a(s)} = {1,2,. . . ,n}. 

PROOF. It is well known from number theory that given (u ,v )= 1, the set 

{xu + yv} represents a complete residue system mod uv, if  x and y run inde- 

pendently through complete residue systems mod v and mod u, respectively. 

Take u = p and v = q, distinct primes, so (p, q) = 1. Let x run through the 

values 0, 1 , . . . , q -  1, a complete residue system mod q; let y run through the 

values 1, 2 , . . . ,p ,  a complete residue system mod p. Then {xp + yq} represents a 

complete residue system mod pq. 

Under the above conditions on x and y, the set {xp + y} represents the integers 

{1,2, . . . ,pq}; for if 1 < a < pq we can modify the division algorithm to write 

a = xp + y, 1 < y < p, and because of the limits on a, we have 0 < x < q - 1. 

Thus the correspondence [xp + yq]T = xp + y is a one-to-one mapping from 

the residue classes mod pq onto the set of positive integers from 1 to pq. If  s =- xp 

+ yq mod pq, we let a(s)= xp + y. 

EXAMPLE. p = 3, q = 5. 

x 

Y 
a(s) 

xp + yq 
s 

0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
5 10 15 8 13 18 11 16 21 14 19 24 17 22 27 
5 10 15 8 13 3 11 1 6 14 4 9 2 7 12 

Using the correspondence [s ]T = a(s), we can show for every residue class Is] 

rood pq that 

(3') a(s) + a(s + p + q) = a(s + p) + a(s + q). 

I f 0 < x  < q -  1, 1 <  y < p, then for 

s = x p + y q ,  a(s) = x p + y ;  

s + p + q - ( x + l ) p + ( y + l ) q ,  a(s + p + q) = (x + l)p + (y + l); 

s + p - ( x + l ) p + y q ,  a(s + p) = (x + l)p + y; 

s + q - xp + (y + l)q, a(s + q) = xp + (y + l). 
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I f 0  < x < q -- 1, y = p, then for 

s =- x p + p q ,  a(s) = x p + p ;  

s + p + q - (x + l)p + q,1 a(s + p + q) = ( x + l ) p + l ;  

s + p - ( x + l ) p + p q ,  a(s + p) = (x + l)p + p; 

s + q  = - x p + q ,  a ( s + q )  = x p + l .  

If x = q -  1, 1 < y < p ,  then for 

s -  ( q - 1 ) p + y q ,  a(s) = (q - 1 ) p  + y; 

s + p + q -  ( y + l ) q ,  a ( s + p + q )  = y + l ;  

s + p - yq, a(s + p) = y; 

s + q - =  ( q - 1 ) p + ( y + l ) q ,  a(s + q) = (q - 1 ) p  + (y + l). 

I f  x = q - 1, y = p, then for 

s - ( q - 1 ) p + p q ,  a(s) = (q - 1 ) p  + p; 

s + p + q -  q, a ( s + p + q )  = 1; 

s + p = pq, a(s + p) = p; 

s + q - ( q - 1 ) p + q ,  a ( s + q ) =  ( q - 1 ) p + l .  

Thus in all four cases (3') holds. 

The proof  of Corollary 2 is now complete, by reference to the sufficiency part of 

Theorem 2. 

COROLLARY 3. I f  p and q are distinct primes, then for any positive integer k, 

there exists a semi-regular polygon of order n' = kpq whose edge set is exactly 

{a(s)} = {1,2, . . . ,n'}. 

PROOF. Given a semi-regular polygon of integral type of  order n, represented by 
n - 1  �9 j ' ~ n - l . J  ~j=oa(j)  r/o = 0, where t/o = e 2~t/", we may use M --,~ =o,lo = 0, corresponding to a 

~ j  = o [a(j) + M] r/d = 0, regular polygon of order n and of side M, to obtain ~-1 

representing a semi-regular polygon, related to the original one, by having every 

side increased by the same amount M. For  any positive integer k we have 

I: [a(j) + M,]n = 0. 
r = O  \ j = O  

I f  we set go = t/~/k, then ~/~kt/Jo = #~+k~. If  we set b(r + kj) = aU) + M,, the last 

displayed equation becomes 
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n k -  1 

b(m)l~ = O. 
m = O  

Thus for integral values of Mo, M1, " ' ,  Mk-1, we have obtained a semi-regular 

polygon of order n' = nk with edge set (b(m)) = (a(j) + Mr}. 

From Corollary 2, when n = pq, we may suppose {a(j)) = (1 ,2 , . . . ,n) .  If  we 

take Mr = rn, we obtain {b(m))= (1 ,2 , . . . , kn=n ' ) ,  as desired. 

For example, using the previous result for n = 15: 

J 
a(j) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

3 8 13 6 11 1 9 14 4 12 2 7 15 5 10 

we obtain a solution for n' = 30 = 2n, as follows: 

r = 0  m 

Mo = 0 b(m) 
r = 1 m 

Ml = 15 b(m) 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 
3 8 1 3  6 1 1  1 9 1 4  4 1 2  2 7 1 5  5 1 0  

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 
18 23 28 21 26 16 24 29 19 27 17 22 30 20 25 

THEOREM 3. There exists a semi-regular polygon of order n > 1 whose edge 

set is exactly {a(j)} = {1,2,. . . ,n} if and only if n ~ p~. 

PROOF. Combine Corollary 1 and Corollary 3. 

We deliberately used the same pattern of proof for Theorem 1 and Theorem 2 

to make it clear that the method used to establish (3) and (3') can be extended to 

establish similar conditions for any integer n. A multiplier G(z), like those used in 

(4) and (4'), can be found for the general case, by examining the formula for the 

cyclotomic polynomial: 

gP,(z) = I~ ( z a -  1)"('/aJ; 
din 

and selecting G(z) =I-~' ( za - 1), where the product contains just those terms for 

which n/d is a prime. 

For  example, if n = p~q~, where p and q are distinct primes, then 

G(z) = (z p~-'q"- 1)(z p ~ - I -  1); 

so the condition analogous to (3) and (3') is the following: 

(3") a(v) - a(v + p ' -  l qa) _ a(v + p'qa- 1) + a(v + p~- lqa + p~qa- 1) = O, 

for every integer v. 
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Part 2. Counting problems 

For any positive integer k, let T(n, k) be the ~umber of ways of assigning 

integers a(1), a(2),.-.,a(n) with 

(10) 1 < a(v) < k, v = 1,2, . . . ,n;  

to produce a semi-regular polygon with, say, ~ =  la(v)q~o = 0 for r/o = e 2~i/~. 

Two of these semi-regular polygons counted by T(n, k) are said to belong to 

the same equivalence class if one can be obtained from the other one by a permuta- 

tion of the dihedral group G =  {g} of order Ial = 2, .  Let S(n,k) denote the 

number of equivalence classes. 

Except for the case n = p~, we find the determination of T(n, k) to be difficult. 

Some of our ad hoc methods appear in the following sections. But once T(n, k) is 

known, there is a standard method for finding S(n,k), using the Frobenius- 

Burnside formula (see [2]) 

1 
Z N(g), (11) s(n,k) = - ~  .~G 

where N(g) is the number of polygons in the set counted by T(n, k) which are 

left invariant by g. It is easy to classify the "rotat ions" of G according to cyclic 

type, there being exactly r (d) of primitive period d, for each divisor d of n. The 

"reflections" of G are all of one type, if n is odd; but there are n/2 of one type 

and n/2 of another type, if n is even. Thus the application of (11) is reasonably 

straightforward, but depends on the factorization of n and the corresponding 

simplicity or complexity of the conditions like (3) or (3'). If  N(I) = T(n, k) can be 

found for the identity permutation I, it seems that N(g) for any other g in G is 

readily found. 

The Case n = p~. Since the conditions (9) are necessary and sufficient and 

since there are exactly k values for each of the independent parameters a(s) for 

1 -< s -< p~-1, we find T(p ~, k) = k ~- ' .  

Let R be a rotation of G of period p~-t for t in the range 0 _< t <_ a - 1. In or- 

der for the polygon with edge set a(1), a(2),. . . ,a(n) to be invariant under R, 

since p~/p~-t = pt, the parameters a(s)for 1 <__ s -< p ' -1 must satisfy the condition 

a(v) = a(v + pt), hence p~-l/pt of them are equal. Thus pt is the number of 

independent ones, and since each of these has k possible values, N(R)= k ~'. 

For later use we note there are r (p,-t) = (p _ 1)p,-,-  1 rotations with the same 

period as R. 
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Assume p is odd. Let F be a reflection of G. Since we may assume any p~- ~ 

consecutive sides as the independent parameters in (9), it is not too special to 

assume F interchanges a(i) and a(p ~ -  i +  1) for 1 < i <  ( p ~ - 1 ) / 2 ,  but fixes 

a(j) for j = (p~+ 1)/2. Since a semi-regular polygon with sides a(1), a(2), ..., a(n) 

satisfying (9) has its subscripts reducible modulo p~- 1, such a polygon is invariant 

under F if and only if the independent parameters a(s) for 1 < s < p~- ~ satisfy 

the additional conditions a(1) = a(p ~- 1),..., a((p~- 1_ 1)/2) = a((p ~- 1 + 3)/2), 

but with no restriction on a ( ( p ' - l +  1)/2). Thus the number of independent 

parameters for a polygon left invariant by F is given by (p ' -1  _ 1)/2 + 1 = 

(p,-1 + 1)/2. Hence for each of the p" reflections F in G, N(F) = k ~p'-1+I)/2 

Remembering that N(I)  = T(p ~, k), we combine the results above with (11) to 

find, for p odd, 

1 [ r 
S(p k) = k r - '  + Z 

t = O  

(p - 1)p ~-t- lkpt "-b p~k (t''- 1 + t)/2]. 

When ~ = 1, since there is only one type of semi-regular p-gon, namely, the 

regular p-gon, we anticipate and check that T ( p , k ) =  k and S(p, k ) =  k, for 

S(p, k) = (1/2 p) [k + (p - 1)k + pk] = k. If a = 2, we find 

S(p 2, k) = 1 2p 2 [k p + (p - 1)k p + (p - 1)pk + p2k(P+~)/2] 

In particular, 

k 
2p 

- 1] [k + ( p -  1)]. 

S(9,k) = --~(k + 1)(k + 2) = 3 ; 

S(25,k) = l ~ ( k  z + 1)(k 2 + 4). 

Both of these formulas can be derived directly by a combinatorial argument. As 

an illustration, we check S(25, 3) = 39, by describing a representative for each of  

the 39 classes; for such a representative, we need name only a(1), a(2), a(3), a(4), 

a(5), since (9) prescribes the remaining sides: 
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a(1) 
a(2) 
a(3) 
a(4) 
a(5) 

1 2  
1 2  
1 2  
1 2  
1 2  

3 1 
3 1 
3 1 
3 1 
3 2 

1 1 1 1  
1 1 2 2  
1 2 2 1  
2 2 2 1  
2 2 2 2  

1 1 
2 1 
1 1 
2 1 
2 3 

1 1 1 1  
1 1 3 3  
1 3 3 1  
3 3 3 1  
3 3 3 3  

1 2 
3 2 
1 2 
3 2 
3 3 

2 2  
2 2  
2 3  
3 3  
3 3  

2 2 
3 3 
3 2 
3 2 
3 3 

2 
3 
2 
3 
3 

a(1) 1 1  
a(2) 1 1  
a(3) 1 2  
a(4) 2 1  
a(5) 3 3  

2 2  
2 2  
2 1  
1 2  
3 3  

3 3 
3 3 
3 1 
1 3 
2 2 

1 1 1 1  
2 2 2 3  
2 3 3 2  
3 3 2 2  
3 2 3 3  

2 2 2 2  
1 1 1 3  
1 3 3 1  
3 3 1 1  
3 1 3 3  

3 3 3 3  
1 1 1 2 
1 2 2 1  
2 2 1  1 
2 1 2 2  

Of course, these representatives must be chosen so that no two are equivalent 

under rotation or reflection. 

Assume p = 2, ~ > 1. Let D be a reflection of G which leaves no edge fixed. 

We may assume the notation chosen so that D interchanges a(i) and a(2 " -  i +  1) 

for 1 < i < 2 "- 1. For a polygon satisfying (9), the subscripts are reducible modulo 

2 , -  1, so such a polygon is invariant under D if and only if the parameters a(1), 

a(2), . . . ,a(U -1) satisfy the additional conditions a(1)=a(2"-1) , . . . , a (2  "-2) 

= a(2"-2+ 1). Thus the number of independent parameters for a polygon left 

invariant by D is given by 2 "- 2, so N(D) = k 2~- 2. There are 2 "- 1 reflections like D. 

Let M be a reflection of G which leaves two edges fixed. Assume the notation 

chosen so that M fixes a(1) and a(2 "- 1 + 1) and interchanges a(i) and a(2 ~ -  i + 2) 

for 2 -< i -< 2 ~- 1. For a polygon satisfying (9), the subscripts are reducible modulo 

2 , -  i, so such a polygon is invariant under M if and only if the parameters a(1), 

a(2), ..., a(2"- I) satisfy the additional conditions a(2) = a(2 "- i), a(3) = a(2 "- i _  1), 

�9 ..,a(2 "-2) = a(2~-2+ 2), leaving both a(1) and a(2"-2+ 1) unrestricted. Thus 

the number of independent parameters for a polygon left invariant by M is given by 

(2 " - 2 -  1) + 2 = 2"-2+ 1, so N(M) = k 2"-~+1. There are 2 "-1 reflections like M. 

Remembering that N ( I ) =  T(2~,k), we combine the previous results on ro- 

tations and the above results on reflections with (11) to find, for p even, 

S(2~,k)= 1 [k : -~  ~-1 1 + ~ 2 ~-l-tk2'  + 2 ~-1k2~-2(1 + k) . 
2c~+1 t =o 

= ( 1 / 8 ) [ k 2 + k 2 + 2 k + 2 k ( l + k ) ]  = k ( k + l ) / 2  = ( k 2 1 ) ;  In particular S(4, k) 

which is easy to check directly, since a semi-regular polygon for n = 4 is a 

rectangle or a square, so S(4 ,k)=  k ( k -  1)]2 + k. For another example, after 
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simplification, we find S(8, k) = k(k + 1) (k 2 -t- k q- 2)/8. It is easy to check that 

for ~ > 2, the numerator in S(U, k) has the factor k(k + 1). 

The Case n = pq, p ~ q. We replace the "s tandard"  conditions 

(3') a(v) - a(v + p) - a(v + q) + a(v + p + q) = O, 0 < v < n -  1, 

by an equivalent set 

(9') a(yp + xq) = C y -  Ax, l < x < p - 1 ,  O < y < q - 1 ,  

where we use the remarks in Corollary 2 to express v = yp + xq mod pq uniquely 

in terms of x and y in the ranges 0 < x < p - 1, 0 < y < q - 1, and then we 

define 
Cy = a(yp), O < y < q - 1 ,  

Ax = a (O) -a (xq ) ,  l < x < p - 1 .  

To show that (3') implies (9'), we iterate (3') replacing v by v + q: 

a(v) - a(v + p) = a(v + q) - a(v + q + p) . . . . .  a(v + xq) - a(v + xq + p). 

But this may be written as follows and then iterated, replacing v by v + p: 

a(v) - a(v + xq) = a(v + p) - a(v + xq + p) . . . . .  a(v + yp) 

- a(v + xq + yp).  

Setting v = 0, we obtain a ( 0 ) -  a(xq)= a ( y p ) -  a(xq + yp) which is equivalent 

to (9') using the definitions of Cy and A~. 

Conversely, to show that (9') implies (3') we have a(v) - a(v + p) - a(v + q) 

+ a(v + p + q) = (Cy - Ax) - (Cy+l - Ax) - (Cy - Ax+l) + (Cy+x-  Ax+x) = 0. 

The significance of (9') is that every edge a(v) can be expressed in terms of the 

set of values Cy = a(yp), 0 _< y < q -  1, and the p -  1 auxiliary parameters 

Aa,A2, . . . ,Ap_l .  

To find T(pq, k) we study the effect of  adding the restriction (10) to the condition 

(9'). The requirements 1 < a(i) < k imply that the Ax in (9') must satisfy the 

condition lAx] < k -  1. We suppose that At,  A2 , " ' ,Ap -1  have been specified 

with l ax]_5 k -  1. 

Case 1. Suppose A x > 0. Then (9') shows a(xq) = a(O) - Ax, which together 

with (10) shows the choices of a(0) limited to A x + 1, ..., k, a total of k -  Ax 

choices. Let A + = {A:,, A x >_- 0}. If  A + ~ ~ ,  let A~* = max A:, over the Ax in A + . 

(If  A + = ~ ,  define Ai*=  0.) The greatest restriction is placed on a(0) by Ai*. 

So, from the point of view of Case 1, there are exactly k - Ai* choices for a(0). 
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Case 2. Suppose A~ < 0. Then (9') shows a(xq) = a(0) + I A~[, which to- 

gether with (10) shows the choices of a(0) limited to 1, 2,.. . ,  k - ] A~ ], a total of 

k - I A x l  choices. Let A - =  {Ax, A x <0}. If A- # ~ ,  let A j * =  maxlA~l over 

the A~ in A-. (If A-  = ~ ,  define A j* -- 0.) The greatest restriction is placed on 

a(0) by - A j*. So, from the point of view of Case 2, there are exactly k - Ai* 

choices for a(0). 

However, we must consider that both Case 1 and Case 2 may hold for the set A~, 

.42,'",Ap_ 1 being studied. When we compare Ai* + 1,..., k, the least range of 

a(0) for all A x in A +, and 1,2,.. . ,  k - A j*, the least range of a(0) for all Ax in 

A- ,  we see there is either no common range, when Ai* + A j* >= k, or the number 

of choices is given by (k - A~*) - (Ai* + 1) + l = k - (Ai* + Ap) .  

Now by (9') and (10), each of the q parameters a(0), a(p),. . . ,a((q - 1)p) is 

subject to the same restrictions; so for a given set of auxiliary parameters 

A1, A2, ..., Ap_ 1, with [A~ [ < k - 1, there is either no corresponding semiregular 

n-gon with 1 < a(i) < k, when Ai* + A j* > k, or the number of such n-gons is 

given by [k - (Ai* + Aj*)] q. Hence we obtain 

(12) r(pq,  k) = E [ k  - (A~* + Aj*)]L 

summed over all sets A1,A2, . . . ,Ap_ 1 having A,* + A~* < k. 

If  we let hp(B) count the number of sets A1,A2 ," ' ,Ap-1  which have B = Ai* 

+ A j*, then we obtain the simpler form 

k - 1  

(12') T(pq, k) = ~., hp(B)(k - B) '7. 
B = 0  

For any integer t > 2, we consider a lattice point P in t -  1 dimensional 

Euclidean space E t-1. If  P has coordinates A1,A2, . . . ,At_I ,  we define B(P) 

= A,* + A~*, as in the discussion above. Let h,(B) count the number of lattice 

points P in E t - l  having B(P) = B. In evaluating (12') we need the case t = p; but 

for later use we need ht(B ) when t is not prime. 

Clearly, hi(O) = 1, for B(P) = 0 if and only if every Ax = 0. 

To determine h,(B) when B > 0, we examine all possible cases, as follows: 

(a) The points P which have all coordinates non-negative, 0 < A, < B, number 

(B + 1) t-  1; those which have all A~ in the range 0 < A~ < B - 1 number B t-  1; 

hence those which have at least one coordinate equal to B, and thus belong to the 

set counted by h,(B), are in number (B + 1)t-1 _ B ,-  1. 

(b) Similarly, the points P which have all coordinates non-positive and which 
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belong to the set counted by ht(B ) by having at least one coordinate equal to 

- B, are in number (B + 1) t-  l _ B t -  1. 

(c) To count the cases where all coordinates Ax of P are in the range - s < Ax 

< B -  s, with both - s  and B -  s occurring at least once each, so that B(P) 

= A i * + A j * = ( B - - s ) + I - - s I = B ,  we will use 

( B +  1) ' - 1  - B  ' -1  - B  ' - 1  + ( B  - 1 ) ' -x;  

for the terms used count, respectively, the entire population, those without - s, 

those without B -  s, and then, to correct properly, those with neither - s  nor 

B - s occurring. 

Since s may range from 1 to B - 1, there are B - 1 cases like (c). Combining 

(a), (b) and (c), we have 

ht(B ) = 2 [ (B  + 1) t -1  - B ' - 1  ] + (B - 1) [(B + 1) ' - I  - 2 B ' -  1 + (B - 1) ' -  1 ] 

which simplifies to 

(13) h,(B) = (B + 1)t - 2B' + (B - 1)', t __> 2, B > 1. 

For example, using h2(0)= 1 and h2(B)= 2 when B > 1, we have by (12') 

k - 1  

r (2q,  k ) = k ' + 2  2 ( k - B ) L  
B = I  

This simplifies to 

(14) 
k k - 1  

T(2q, k ) =  ~, x q +  ~, x q, 
X = I  x = l  

involving sums of powers of integers for which there are well-known formulas. 

(See [-1].) 

For another example, since h3(0 ) = 1 and by (13) we have ha(B ) = 6B when 

B > 1, we use (12') and obtain 

k - 1  

T(3q, k) = k q + 6 ~ B ( k - B )  q 
B---1 

(15) 

k 'I --I- 6 ( -  1)'k ~ E B '+1. 
r = 0  B = I  

In particular, we find 

(14') T(6,k) = k2(k 2 + 1)/2; 

(15') T(15, k) = k(2k 6 + 7k 4 + 7k 2 - 2)/14. 
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Let Rd be a rotation of G of period d, d > 1, where d divides pq. We know there 

are ~b(d) rotations of period d, each having the same value for N(Rd). We shall 

show N(Rp) = k q, N(Rq) = k p, N(Rp,,) = k. 

It is obvious that N(Rpq) = k, since only the regular n-gons, with a(v) = a(v + 1) 

for every v, are invariant under a rotation of period n. 

A semi-regular polygon satisfying (9') and invariant under Rp must satisfy the 

additional condition a (0 )=  a(xq) for all x. But this requires A x = 0 for all x. 

Conversely, A~, = 0 for all x implies a(v) = a(v + q) for all v. Consequently, the 

free parameters in (9') are a(yp), 0 < y < q - 1. Under (10) each of these has k 

possible values, so N(Rp)= kL 

We interchange the roles of p and q to obtain N(Rq) = k p. 

The Subcase p = 2 < q. Let D' be a reflection of G which leaves no edge 

fixed. Let the notation be chosen so that D' interchanges a(i) and a(2q - i + 1) 

for all i. In (9') we have 1 < x - p - 1, so there is only one auxiliary parameter 

A = A 1. To (9'), written in the form 

we adjoin 

(O') 

a(2y + q) = a(2y) - A, O ~ y ~ q - 1 ,  

a(i) = a(j) if  i + j = 1 mod 2q. 

(a) We can solve (2y + q) + 2y ~ 1 mod 2q for 37, unique mod q. Then from (D') 

and (9') we have a(237)= a(237 + q ) =  a(237)- A, which requires A = 0. 

(b) We can solve (2y 1 + q) + 2y z = 1 mod 2q, which reduces to 2(yl + Y2) = 1 

mod q, to see that, except for 37, the other y's are distributed in pairs, such that 

from (D'), (9 ' )and (a): a(2y2) = a(2yl + q) = a(2yl). So the independent param- 

eters a(2y) in (9') are reduced in number to (q - 1)/2 + 1 = (q + t)/2.  

Conversely, the conditions arrived at in (a) and (b) are sufficient so that sides 

a(i) satisfying (9') also satisfy (D'). Hence N(D')  = k (q+ 1)/2. There are q reflections 

of type D'. 

Let M '  be a reflection of G which leaves two edges fixed. Let the notation be 

chosen so that M '  interchanges a(i) and a(2q - i) for all i; but since subscripts 

are identified modulo 2q, sides a(q) and a(2q) are left fixed. To (9') in the form 

a(2y + q) = a(2y) - A, 0 < y < 2 - 1, we adjoin 

(M')  a(i) = a(j) if  i + j = 0 mod 2q. 

(a) The condition 2y 1 + 2y2 = 0 mod 2q reduces to Yl + Y2 = 0 mod q, hence, 
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in general, under (M')  there are pairs of distinct Yl, Y2 for which it is required that 

a(2yl) = a(2y2). The one exception, Yl = Y2 = )7, occurs for 37 = q, corresponding 

to a(237)= a(2q). So, the independent parameters a(2y) in (9') are reduced in 

number to (q - 1)/2 + 1 = (q + 1)/2; and there is no special restriction on the 

auxiliary parameter A. 

Conversely, the conditions arrived at in (a) are sufficient to make the polygon 

semi-regular and invariant under M ' .  By the same reasoning used in finding (12), 

we find 

k - 1  k 

u(M')=  2 (k - iAI)  E x + 
A = - k + l  x = l  

There are q reflections of type M' .  

Combining the above results with (11) and (14), we find 

x q -1- 2 X q a t- k q q- (q -- 1)k 2 + (q - 1)k + q k  (q+ 1)/2 S(2q ,  k )  - 4q ~ 1 x=l  

k - 1  
X(q+ 1)/2 

x= l  

+ q x(q+l)12 + ~, x (q+I)/2 
=1 x = l  

lk! ] x q + (q - 1)(k 2 -t- k )  "-t- 2q Z X (q+1) /2  

4q 1 ~=1 " 

For  example, after simplification, we find 

S(6, k ) =  ( k + 3 )  
4 ; 

S(10, k) = k ( k  + 1)(k z + k + 3)(k 2 + k + 4)/60. 

T h e  S u b c a s e  3 < p < q. Each reflection F '  of G fixes one edge. Let the notation 

be chosen so that F '  interchanges a(i)  and a(pq - i), if  they are distinct, but by 

the same rule F '  fixes a(pq) .  To (9') we adjoin 

( F ' )  a( i)  = a( j )  if i + j - 0 mod pq.  

(a) It follows from (F')  on the one hand that 

a ( y x p  ) = a (y2p  ) if Yl + Y2 - 0 mod q. 

(b) On the other hand, if xl + x2 - 0 rood p, then a ( x l q )  = a(x2q)  or a(0) 

- Axl = a(0) - Axe, hence 

Ax,=Ax2 i f x  a + x 2 - 0  m o d p .  

But the conditions obtained in (a) and (b) are sufficient for (F'). Indeed, let 
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i = YaP + x lq ,  J = Y2P + x2q mod pq. Then if i + j  =- (Yl + Y2)P + (Xt + Xz )q  

- 0  m o d p q ,  we have Y l + y 2 - 0  rood q and x l + x 2 - 0  mod p. Hence 

a(i) = a(y lp  ) - AxL = a(y2p ) -- Ax~ = a(j). 

Thus among the auxiliary Ax, 1 <_ x < p - 1, only half, for instance, the ones 

1 < x < ( p  - 1)/2, remain independent; and among the parameters a(yp), 

0 < y < q - 1, only those with 0 < y < (q - 1)/2, that is, (q + 1)/2 of them, 

remain independent. If  we set t - 1 = (p - 1)/2, then in using (13) we have 

t = (p + 1)/2. By the same reasoning used in finding (12) and (12'), we obtain 

k-1 
N(F ' )  = ~, h(p+l) /2(B)(k  - B) (q+1)/2 

B = O  

There are pq reflections of type F' .  

Combining the results above by the use of (11), for n = pq, p and q distinct 

odd primes, we find 

r 1 k-1 
S(pq, k) = [2-~q B~=o hv(B) (k - B) q + (p - 1)k q + (q - 1)k p 

k-1 ] 
+ (p - 1)(q - 1)k + pq Y, h(p+l) /2(B)(k  - B)  (q+a)/2 . 

B=O 

For example, consider the case p = 3, q = 5. Since (p + 1)/2 = 2 and (q + 1)/2 

= 3, we can use (12') to see that N(F' ,  15) = T(6, k). It follows that 

S(15,k) = 3 ~ [ T ( 1 5 ,  k) + 2k 5 + 4k a + 8k + 15T(6,k)]. 

Using the previous computations in (14') and (15'), we find 

S(15, k) = k(k + 1)(k + 2)(2k* - 6k a + 49k z - 30k + 55)/420. 

The Case n = p'qa, p =r q. The conditions 

(3") a(v) - a(v + p~-lqp) _ a(v + p~qP-1) + a(v + p~-lq~ + p~qp-1) = O, 

for every integer v, may be replaced by the equivalent conditions 

(9") a(s + yp 'qa-1  + xp , - l qp )  -~ a(s + yp~qa-1) _ As,x; 

l _ < x _ < p - 1 ;  0_<__y__<q-1; O < _ s < _ p ' - l q t ~ - l - 1 .  

The conditions (9") are like the conditions (9') for the case n = pq, but repeated 

p , - l q a - 1  times; hence 

(12") T(p~q p, k) = [ r (pq ,  k)] p'- ~q~- 1, 
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and the results in (12) and (12') complete the counting. 

Let R d be a rotation of G of period d, where d divides n and d > 1. There are 

qS(d) rotations of type Rd, and we can show that each has 

N(Rd) = k,/a. 

To see this we note that a semi-regular polygon (a(i)} of order n = p~qa is 

invariant under Rd if and only if 

(Ra) a(i) = a(j) if i = j mod n/d. 

But any (a(i)} satisfying (Rd) will satisfy (9") because each set {a(i + xn/d)} 

with a(i + xn/d) = a(i) for 0 < x < d - 1 can be used to form a regular polygon 

Pi of order d; then the n/d regular polygons Pi, for i ranging from 1 to n/d, may 

be composed to form a semi-regular polygon of order n. Since the a(i) are to 

satisfy (10), we find N(Rd) = k "/d. 

The Subcase n = p~qa, 3 < p < q. For this subcase, n is odd, so there is only 

one type of reflection F" in G, fixing, say, edge a(0). Then a(i) is invariant under 

F" if and only if 

(F") a(i) = a(j) if i + j = 0 mod n. 

Consider the p , - lq# - I  polygons Ps of type pq, represented by the conditions 

(9") as s ranges from 0 to p , -  lq#-1_ 1. Since a(0) is fixed by F", the polygon Po is 

invariant under F" only if it satisfies the conditions used in counting N(F') when 

n = pq. So, Po contributes a factor N(F') to the present computation. The other 

polygons Ps, s # 0, are divided into pairs P+, and P~, where P,2 is a reflection of  

P,, under F". Since P~I satisfies a set of conditions like (9'), there are T(pq, k) 

choices for P~,, with Ps2 completely determined by P,,. Since there are 

(p~- lq#- 1 _ 1)/2 pairs of polygons, we find 

N(F') = N(F') [T(pq, k)] ( : -  '~#-'- 1)/2. 

For this subcase the computation of S(n,k) is completed by using (11). For 

n = p'q#, 3 <= p < q, 

1 f[T(pq,  k)] p'-'q#-' + ~, alp(d) k n/a 
S(p~q #, k) = 2 P'q------~# ~ dl, 

d > l  

+ p~qPN(F') [T(pq, k)] ~:- ' : - ' -  1):2 }. 

The simplest illustration is n = 45 = 32"5, for which 
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1 [T(15, k) 3 +2k~ 5 S(45, k) = -~-  + 4k 9 -t- 6k 5 + 8k a + 24k 

+ 45N(F', 15)r(tS, k)]. 

Since N(F',  15)= T(6,k) we can use (14') and (15') to obtain S(45,k) as a 

polynomial in k. 

When n = 2"q ~, we find it necessary to distinguish the cases a = 1 and c~ > 2. 

The Subcase n = 2q #,2 < q. The condition (9") describes q#-l, an odd 

number, of component semi-regular polygons P~ of type 2q. 

Let D" be a reflection of G fixingno edge. Suppose {a(i)} is a semi-regular n-gon, 

invariant under D". One of the P~, say P~o, is reflected into itself, allowing N(D') 
possibilities. The other P~, s r So, are reflected in pairs. One member of the pair is 

an arbitrary semi-regular 2q-gon. Since there are ( q # - 1  1)/2 pairs, we find 

N(D") = N(D') [T(2q, k)] ~q#-l- 1)/2. 

Let M" be a reflection of G fixing two edges. Suppose {a(i)} is a semi-regular 

n-gon, invariant under M". One of the P~, say Ps*, is reflected into itself, allowing 

N(M') possibilities. The other P~, s # s*, are reflected in pairs. One member of a 

pair is an arbitrary semi-regular 2q-gon. Hence we find 

N(M") = N(U')[T(2q, k)](q#-'- 1)/2 . 

Using (11) we have, for every odd prime q, 

S(2q#,k)= ~--~ {[T(2q, k)]~P-~ + ~ dp(d)kn/d + q#N(D") + q#N(M")} . 
din 

d > l  

For example, for n = 18 = 2 . 3  2, we have 

S(18, k) 

" � 9  �9 �9 6 :  �9 �9 9 7  �9 

= k(k + 1)(k 1~ - k 9 + 4k s + 4k 7 - k 6 + 25k s + 28k 4 + 8k 3 + 28k 2 + 48)/288. 

The Subcase n -- 2~q #, a >~ 2, 2 < q. The conditions (9"), together with e > 2, 

describe 2~-1q #-~, an even number, of component semi-regular polygons P~ 

of type 2q. 
Let D" be a reflection of G fixing no edge. Suppose {a(i)} is a semi-regular 

n-gon, invariant under D". Then the Ps are reflected in pairs. One member of each 
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pair is an arbitrary semi-regular 2q-gon. There are 2"-2q a-1 pairs, hence under 

(10) we find 

N(D") = [T(2q, k)] 2"-2q~-'. 

Let M" be a reflection of G fixing two edges. Suppose {a(i)} is a semi-regular 

n-gon, invariant under M". Then one of the P~, say P~o, is reflected into itself, as 

under D'; and another, say Ps*, is reflected into itself, as under M'.  For instance, 

if So = 0 then s* = 2~-2q ~-I. The other P~, s r So, s ~ s*, are reflected in pairs. 

One member of each pair is an arbitrary semi-regular 2q-gon. There are 2"-2q a- t 

- 1 pairs, hence under (10) we find 

N(M") = N(D') N(M') [T(2q, k)] 2"- 2qa-I_ 1. 

Using (11) we have, for every odd prime q and every a > 2, 

1 { , 
S(2~q~,k) =2~+1 q--------? [r(2q, k)] 2"-'~'- + Z ~(d)k ~ld 

din 
d > l  

+ 2~-~qP[N(D ") + N(M")]/. 

For example, for n = 12 = 22. 3, we have 

1 
S(12,k) - 24 - - -  {T(6, k) 2 --I- k 6 + 2k 4 --~ 2k 3 + 2k 2 + 4k 

+ 6 IT(6, k) + k 2 k(2k2 + �9 

k(k + 1)(k 6 - k 5 -t- 7k 4 q- 9k 3 + 12k 2 + 4k + 16)/96. 

Part 3. Problems and comments 

For a general n we have no trouble finding conditions (3*) which embrace 

(3), (3') and (3"). 

THEOREM. I f  the positive integer n > 2 has the form 

~t 2 A m 

n = p l  p 2  " " P r o ,  

where p~, P2,'",Pm are distinct primes, then necessary and sufficient for a set 
a(1), a(2), ...,a(n) of positive integers to be the sides of a semi-regular polygon of 
order n is that 

(3*) a(v)+ ~ [~*( -1 ) ' a (v  + ~ n/px,) ] = 0  
r = l  j = l  

for every integer v, where it is understood that (1) applies and that ]~* is taken over 
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a I l ( 7 )  combinationsofpl,p2,'",pm, takenratatime. 

The proof of the Theorem parallels exactly the proofs of (3) and (3'), except 

that Q(z)= G(z)P(z) is formed by taking 

a(z )  = (z "1" '-  1). 
i = 1  

Thus G(z) has as a root every imprimitive n-th root of unity, but no primitive 

nth root of unity. 

However, we are unable to interpret the conditions (3"), in order to count 

T(n,k), expect in the cases m = 1 and m = 2. The difficulty seems to center 

around the fact that each condition in (3*) involves 

of the a(i). Thus for m = 3 we have 

a( i ) -  a(i + n/p1)-  a(i + n/p2)-  a(i + n[pa) + a(i + nip 2 + n/p3) 

+ a(i + nip a + n/Pl) + a(i+ nip 1 + nip2)-  a(i + nip 1 + nip 2 + n/p3)=O ' 

for every integer i. 

Of course, we know that only ~(n) of the conditions in (3*) are independent; 

and the conditions may be obtained in independent and different-appearing form 

by using the cyclotomic polynomial ~ ( z )  to determine Pl(z) = P(z) mod O~(z), 

where Pl(z) is of degree ~b(m) - 1. But even in a specific case, such as n = 30, we 

have been unable to determine T(n,k) when m > 3. 

It is somewhat enlightening to consider semi-regular polygons over the real 

field, in contrast to the previously considered semi-regular polygons over the 

rational field. For n > 3, the irreducible polynomial Fn(z) over the reals, having 

r/0 = e 2~/n as a root, is a quadratic. But over the rationals, the irreducible cyc- 

lotomic polynomial ~ (z ) ,  having ~/o as a root, is of  degree ~b(n). For n > 3, 

if(n) = 2 only for n = 3, 4, 6. So, in these cases and only these cases, the conditions 

for a real semi-regular polygon are the same as those for a rational semi-regular 

polygon. We thus obtain in these three cases the following statements of which 

the first two are evident, while the third one follows easily from elementary 

geometrical considerations: 

All semi-regular triangles, real as well as rational, are necessarily equilateral. 

All semi-regular quadrilaterals, real as well as rational, are necessarily rectangles. 
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All semi-regular hexagons, real as well as rational, must necessarily have 

a(i) - a(i + 2) - a(i + 3) -t- a(i + 5) = 0 for alI i. 

In all other cases n __> 3, n ~ 3, 4, 6, the real semi-regular polygons have only 

two sides completely dependent on the other sides, whereas the rational semi- 

regular polygons have ~(n) sides completely dependent on the other sides; since 

q~(n) > 2, the outcome is quite different. For example, if n is a prime p, the only 

rational semi-regular p-gons are the regular ones; but if p > 3, there are real 

semi-regular p-gons which are not regular. 

It is not necessary to make an algebraic analysis of the real semi-regular 

polygons of order n > 3. For one sees geometrically from a consideration of 

angles and half-lines that n - 2 sides of the polygon, except for some obvious 

restrictive inequalities, can be chosen quite arbitrarily. 

To describe the situation in more detail, let us denote the vertices of the polygon 

in counter-clockwise order by Ao, AI ,A2 , ' . . ,A ,_~ ,A ,  = Ao; let the side Aj_IA  j 

have length xi, and let the direction from A j_ 1 to Aj be 2rcj In, j = 1, 2,... ,  n. We 

shall describe how the quantities x~, Xz, "', x, in this order should be chosen, in 

order that AoA1A2"" A ,_ IA ,  be a real semi-regular polygon. 

For 1 < j < n/2, the xj may be quite arbitrary, subject only to the restriction 

that xj > 0. For an indexj in the range n/2 < j < n - 2, we assume that the lengths 

x l , x2 , . . . , x j_ l ,  hence also the points Ao,A1,Az , . . . ,Aj_  t have already been 

chosen and investigate the choice of xj. It turns out that xj is subject to certain 

limits, above as well as below, but that the nature of the lower limit depends on 

the position of A j_ 1. The two cases are illustrated in Figs. 1 and 2. In both Figures 

we have drawn the half-lines AoX and AoY; AoX has direction 2rc(j + 1)In - rc  

which is opposite to the direction from Aj to Aj+a, the next side to be dealt with, 

and Ao Y has direction rc which means it will eventually contain the side A,_ xA, 

\ 
\ 
\ 
\ 
\ A 5 

\ 
\ 
\ 

A4 A 3 

5 X4 X~3 A 2 

• 

L ~ A o 

Figure 1 
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= A,_ 1Ao. It  is clear from the geometry of our configuration that Aj has to lie in 

the interior of the sector X A o Y  (by which we mean the sector to the " le f t "  of 

Ao X and "above"  AoY) in order that we be able to complete the semi-regular 

n-gon after the choice of xj. Now in Fig. 1, where n = 8, j = 6, A5 is still outside 

the sector XAoY,  namely, to the right of AoX; hence A 6 must be an interior 

point of the line segment L'L", in symbols, AsL' < x6 < AsL". On the other 

hand, in Fig. 2, where n = 9, j = 7, A 6 is already inside the sector X A o Y  (or on 

AoX); hence A 7 must be interior to the line segment A6L" , in symbols, 0 < x7 

< A6 L". Finally, the sides Xn-~ and x, are completely determined by xl,  x2, ..., 

x , -2 ;  in fact, as is easily seen, they are linear combinations of these n - 2 quan- 

tities with coefficients which are, incidentally, real algebraic numbers. 

As a final illustration, we give the complete set of inequalities and equations 

for the cases n = 5 and n = 8. They are easily derived by means of elementary 

trigonometry. The notation (u) + for real u is defined by (u) § = max (u,0), and 

the quantity 2 stands for 2 = (x/5 - 1)/2 = 2 cos (2~z/5). 

n = 5 :  x 1 > 0 ;  x 2 > 0 ;  (2x 1 - 2 x 2 )  + < x  3 < ( 2 + 1 ) x  1 + x 2 ;  

x4 = xl + 2x2 - 2x3; x5 = - 2xl + 2x2 + xa. 

n = 8: x~ > 0; x 2 > 0; x 3 > 0 ;x4  > 0; 

(x~ - x3 - x/2m) + < x5 < x~ + x/2x2 + x3; 

(x/2x,  + x2 - x4 - x/2Xs) + < x6 < xl lx /2  + Xz + xalx/2 - xsIx/2; 

x 7 = x,  + x/2xz + xa - x5 - 4 2 x 6 ;  

xs = - x/2x~ - x2 + x4 + x/2x5 + x6. 
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In contrast  to the above relations,  we recall  tha t  in the ra t ional  case the corre-  

sponding relations,  when writ ten in the same form,  would be as fol lows: Fo r  

n = 5, a(1) > 0, a(2) = a(1), a(3) = a(1), a(4) = a(1), a(5) = a(1); and for  n = 8, 

a(1) > 0, a(2) > 0, a(3) > 0, a(4) > 0, a(5) = a(1), a(6) = a(2), a(7) = a(3), 

a(8) = a(4). 
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